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Overview

 Fundamentals
• Biological evolution

• Evolutionary algorithms

• Genetic algorithms

 Modelling Gene Regulatory Networks 
(GRNs)

 Evolution of biological clocks with GRNs
 Evolution in NetBuilder‘



Part 1: Fundamentals

Biological Evolution 
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Biological Evolution

 Evolution = change in the gene pool of a 
population over time

 Gene = hereditary unit - can be passed on 
unaltered for many generations

 Gene pool = set of all genes in a species or 
population
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Biological Evolution - Example

 English moth, Biston betularia:
• Two color morphs: light and dark
• 1848 dark moths <= 2% of the population

• Frequency of the dark morph increased:
• 1898 95% were dark in Manchester and other highly 

industrialized areas

• Why?  natural selection
• Soot from factories darkened birch trees the moths 

landed on 
• Birds could see the ligther colored moths better and 

ate more of them  more dark moths survived

• http://www.talkorigins.org/faqs/faq-intro-to-biology.html
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Biological Evolution – cont‘d

 Natural selection: 
• Favors those species for further survival and evolution that 

are best adapted to their environment  see English moth

 Population is evolving  ratio of different 
genetic types is changing and new types are 
created
• Not each individual !!

 Darwin: 
• Evolution through random variations of heritable 

characteristics and natural selection
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Evolutionary cycle : Generation

Recombination

MutationPopulation

Offspring

Parents
Selection

Replacement
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Dictionary 1

 Gene – smallest unit with genetic information
 Genotype –  collectivity of all genes
 Phenotype – expression of genotype in 

environment
 Individual – single member of a population with 

genotype and phenotype
 Population – set of several individuals
 Generation – one iteration of evaluation,   

selection and reproduction with variation
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Selection and Reproduction

 Selection does not act on genotype at all but 
on the performance of the phenotype (fitness) 

 There is differential reproduction  
phenotypes better adapted to the environment 
are likely to produce more offspring

 Slightly unfaithful reproduction creates 
genotypic variations  affect traits of the 
phenotype, which in turn affect fitness

 These genotypic variations are heritable
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Recombination (crossover)

 Choose two individuals from 
current population  parents

 New combination of the genetic 
material of these individuals  
offspring

 No new genetic information, only 
reshuffling of existing information

 But can have strong effects on 
phenotype

http://student.biology.arizona
.edu/honors2001/group12/int
roduction.html
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Duplication

 Any doubling of a 
certain region, e.g. 
through unequal 
recombination

 If this region consists 
of a gene, it is called 
gene-duplication
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Mutation

 Permanent changes to genetic 
material

 Can be caused by errors during 
reproduction of DNA

• Mutation rate: i.e. 1 in 10.000 bases is 
incorrectly reproduced

 Brings variability into reproduction
 Usually small changes at individual 

level but strongly depends on 
“importance” of mutated base to 
phenotype
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The Evolutionary Mechanisms

 Selection and differential reproduction 
• DECREASE diversity in population

 Genetic operators (mutation, recombination) 
• INCREASE diversity of population



Part 1: Fundamentals (2)

Evolutionary Computation

Genetic Algorithms (GA) 



Evolutionary Computation
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Evolutionary Computation

 Exploitation of concepts of natural evolution for 
problem solving using computers

 Simulation of evolutionary processes 
(recombination, mutation, selection) for solving a 
desired problem

 Particularly well-suited to complex, 
multidimensional problems too big to search 
exhaustively (non-linear optimization problems)

 Cannot solve all problems perfectly, but has 
fewer restrictions than most problem-solving 
algorithms
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Optimization

 Finding the best solution to a problem
 Mathematically: finding the minimum or 

maximum of a function (optimum)

Maximum

Minimum
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Optimization - Problems

 Example: hill-climbing
• Start with estimate of global maximum

• Try to improve by finding other solutions that have 
a greater value than the current estimate (local 
search)
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Optimization - Problems

 Example: hill-climbing
• Start with estimate of global maximum

• Try to improve by finding other solutions that have 
a greater value than the current estimate (local 
search)
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Optimization - Problems

 Example: hill-climbing
• Start with estimate of global maximum

• Try to improve by finding other solutions that have 
a greater value than the current estimate (local 
search)

Local
maximum

Global
maximum

• Local maxima = hazards  could converge to 
local maximum instead of global
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Evolutionary cycle - revisited

Recombination
Mutation

Population

Offspring

Parents

Replacement

(random) start population

Selection
End?

Evaluation
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 Individual - one candidate solution
 Population - set of individuals
 Genotype - encoded representation of individual
 Phenotype - decoded representation of individual
 Mapping - decodes the phenotype
 Mutation - variability operator that modifies a genotype
 Recombination/Crossover - variability operator mixing 

genotypes
 Fitness - performance of a phenotype with regard to 

objective
 Iteration - Generation

Dictionary 2
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EC - General properties

 Exploit collective “learning“ process of a 
population (each individual = one solution = one 
search point)

 Evaluation of individuals in their environment = 
measure of quality = fitness  comparison of 
individuals

 Selection favors better individuals who 
reproduce more often than those that are worse

 Offspring is generated by random recombination 
and mutation of selected parents
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Main trends

 Genetic algorithms (GAs)
 Genetic programming (subform of GAs)
 Evolutionary strategies (ES)
 Evolutionary programming (EP)



Genetic Algorithms



GAs - Simple Example



STRI, University of Hertfordshire 27

Simple example – f(x) = x²

 Finding the maximum of a function: 
• f(x) = x²

• Range [0, 31]  Goal: find max (31² = 961)

• Binary representation: string length 5 = 32 numbers (0-31)

= f(x)
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F(x) = x² - Start Population

100001String 5

4412110101String 4

1001001010String 3

9300011String 2

36600110String 1

fitnessvaluebinary

1
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F(x) = x² - Selection

100001String 5

4412110101String 4

1001001010String 3

9300011String 2

36600110String 1

fitnessvaluebinary

1

 Worst one removed
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F(x) = x² - Selection

100001String 5

4412110101String 4

1001001010String 3

9300011String 2

36600110String 1

fitnessvaluebinary

1

 Best individual: reproduces twice  keep 
population size constant
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F(x) = x² - Selection

100001String 5

4412110101String 4

1001001010String 3

9300011String 2

36600110String 1

fitnessvaluebinary

1

 All others are reproduced once



STRI, University of Hertfordshire 32

F(x) = x² - Recombination

 Parents and x-position 
randomly selected 
(equal recombination)

0 0 1 1 0

0 0 0 1 1

0 0 1 1 1

0 0 0 1 0

String 1:

String 2:

2String 4String 3

4String 2String 1

x-positionpartner
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F(x) = x² - Recombination

 Parents and x-position 
randomly selected 
(equal recombination)

0 1 0 1 0

1 0 1 0 1

0 1 1 0 1

1 0 0 1 0

String 3:

String 4:

2String 4String 3

4String 2String 1

x-positionpartner
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F(x) = x² - Mutation

 bit-flip:

• Offspring -String 1: 00111 (7)  10111 (23)

• String 4: 10101 (21)  10001 (17)
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F(x) = x²

• All individuals in the parent population are 
replaced by offspring in the new generation
• (generations are discrete!)

• New population (Offspring):

289String 5

2561610000String 4

1691301101String 3

4200010String 2

5292310111String 1

fitnessvaluebinary

1710001
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F(x) = x² - End

 Iterate until termination condition reached, e.g.:

• Number of generations

• Best fitness

• Process time

• No improvements after a number of generations

 Result after one generation:

• Best individual: 10111 (23) – fitness 529



STRI, University of Hertfordshire 37

F(x) = x² - Animation

 Java-Applet (html page) with examples



GAs - General
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Genetic algorithms

 Differences to other search and 
optimization algorithms:
• GAs search from a population of points 

(possible solutions), not from a single point 

• GAs use probabilistic, not deterministic rules 
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History

 In 1960s John H. Holland, University of 
Michigan:
• Abstraction and generalisation of the 

population concept with genetic coding and 
operators

 Use in Bioinformatics, e.g.:
• motif discovery,

• sequence alignment, 

• protein structure prediction etc.



Coding and Mapping
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Genetic coding

 Finite strings (= genome, represents genotype)
 Strings consists of units with information (unit = 

gene)
 One string ( individual) = one possible 

solution of the problem
 Genotype often real numbers or bit string:

0 1 0 1 0 11.853 0.492
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Genetic coding and mapping
 What should the phenotype look like and how to encode it 

as a genotype? 
 How does one map from genotype to phenotype, 

considering the sources of variation (mutation and 
recombination)?

• Highly problem dependent!

• Hint: small changes to genotype should often result in small 
changes to phenotype, i.e. similar performance: heritability 
of traits!

• heritability of traits is important  otherwise GA becomes 
only random search
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Mapping – Example

 Binary coding versus Gray coding of a number

 Hamming distance:

• Number of bits that have to be changed to map one 
string into another one

• E.g. 000 and 001  distance = 1  

 Remember: small changes in genotype should 
cause small changes in phenotype
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Mapping – Example cont‘d

• Binary coding of 0-7 (phenotype):

1106
1117

1015
1004
0113
0102
0011
0000
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Mapping – Example cont‘d

• Binary coding of 0-7 (phenotype):

1106
1117

1015
1004
0113
0102
0011
0000

• Hamming distance, e.g.:
– 000 (0) and 001 (1)

• Distance = 1 (optimal)

– 011 (3) and 100 (4)
• Distance = 3 (max possible)
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Mapping – Example cont‘d

• Gray coding of 0-7:

1016
1007

1115
1104
0103
0112
0011
0000
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Mapping – Example cont‘d

• Gray coding of 0-7:

1016
1007

1115
1104
0103
0112
0011
0000

• Hamming distance:
– Two neighboring numbers 

(phenotypes) have always 
a genotype distance of 1 
(all differ only by one bit 
flip) – OPTIMAL mapping



STRI, University of Hertfordshire 49

Mapping – Example cont‘d

 Comparing kinship with distance = 1

 Binary: Gray:



Selection
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Selection

 Based on fitness function:
• Determines how „good“ an individual is (fitness)

• Better fitness, higher probability of selection

 Selection of individuals for differential 
reproduction of offspring in next generation

 Favors better solutions
 Decreases diversity in population
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Selection - Roulette-Wheel
 Each solution gets a 

region on a roulette 
wheel according to its 
fitness

 Spun wheel, select 
solution marked by 
roulette-wheel pointer

 stochastic selection 
(better fitness = 
higher chance of 
reproduction)

http://www.edc.ncl.ac.uk/highlight/rhjanuary2007g02.php
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Selection - Elitism

 Individual(s) kept unchanged for next 
population

 Example:
• Selection based on fitness values

• Keep the best individual of current population 

• unrealistic but ensures best fitness of a 
generation never decreases  decrease of 
diversity
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Selection - Tournament

 randomly select q individuals from current 
population

 Winner: individual(s) with best fitness among 
these q individuals

 Example:
• select the best two individuals as parents for 

recombination 

q=6 selection



Genetic variability operators
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Mutation

 Varies details, usually exploitive
 Changes one position in the string 

• each position same small probability of undergoing a 
mutation

 Goal: search around existing good solution, possibly 
leave local optima

0 1 0 0 0 0

1.853 1.807
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Recombination/Crossover

 Usually explorative
 Creates new strings by combining parts of 

two existing strings  

00 1 000 1 1 1

100 10 1 00011 1

101

Parents:

Offspring:

1 1
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Recombination 

• Unequal:
– Crossover points independent for each 

string chosen

00 1 000 1 1 1

100 10 1 00011 1

101

Parents:

Offspring:

1 1



Fitness
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Fitness function

 Nature: 
• only survival and reproduction count

• how well do I do in my environment

 Fitness space structure:
• Defined by kinship of genotypes and fitness function

• Advantage: visual representation can be useful when 
thinking about model design

• Limitation: ideas might be too simplistic when not working 
on toy-problems - complex spaces and movements (think 
crossover!)
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Fitness space or landscape

  Schema of genetic kinship
 How we “move” in that landscape over generations is 

defined by our variability operators, usually mutation and 
recombination

 Now add fitness… 

0000 0001

100110001100

0100

0110 0010 0011
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Fitness space or landscape

  Schema of genetic kinship
 How we “move” in that landscape over generations is 

defined by our variability operators, usually mutation and 
recombination

 Now add fitness… 

0000 0001

100110001100

0100

0110 0010 0011

fitness
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Fitness landscapes contd.
 x/y axes: kinship, i.e. the more genetic resemblance the 

closer together
 z axis: fitness

Every “snowflake” one 

individual, search 

focuses on “promising” 

regions (due to                                                         

differential reproduction) A
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Fitness space – Good design

 Easy to find the optimum by local search
 neighboring genotypes have similar fitness     

(smooth curve  high evolvability)
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Genotypes
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Fitness space - Bad design

 Here we will have a hard time finding the optimum
 Low evolvability (fitness is right/wrong)
 Either problem not well suited for GA or bad design

F
itn

e
ss

Genotypes



STRI, University of Hertfordshire 66

Fitness space – Mediocre design

 Many local optima, so we are likely to find one
 However not much of a gradient to find global 

optimum, random search could do as well
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Dynamic fitness landscape

 Fitness does not need to be static over 
generations

 Can allow to reach 

regions otherwise 

uncovered

 Natural fitness 

certainly very dynamic A
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Design issues
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Integrating problem knowledge

Always to some degree in representation/ 
mapping

Create more complex fitness function
Start population chosen instead of a 

uniform random one
• Useful e.g. if constraints on range of solutions

• Possible problems: Loss of diversity and bias
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Design decisions

 GAs: high flexibility and adaptability because 
of many options:
• Problem representation

• Genetic operators with parameters

• Mechanism of selection

• Size of the population

• Fitness function 
 Decisions are highly problem dependent
 Parameters not independent, you cannot 

optimize them one by one
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Hints for the parameter search

 Find balance between:
• Exploration (new search regions)

• Exploitation (exhaustive search in current region)
 Parameters can be adaptable, e.g. from high in the 

beginning (exploration) to low (exploitation), or even be 
subject to evolution themselves

 Balance influenced by:
• Mutation, recombination: 

• create indiviuals that are in new regions (diversity!!)

• fine tuning in current regions

• Selection: focus on interesting regions
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Keep in mind

 Start population has a lot of diversity
 “Invest” search time in areas that have proven good 

in the past  Loss of diversity over evolutionary time
 Premature convergence: quick loss of diversity poses 

high risk of getting stuck in local optima
 Evolvability:

• Fitness landscape should not be too rugged

• Heredity of traits

• Small genetic changes should be mapped to small phenotype 
changes



Wrapping up Part 1
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GA- Summary

 Selection:
• Focus on fittest individuals

 Recombination:
• Adds alternative solutions to population

 Mutation: 
• Makes sure that most of the search space is 

reached 
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GA- Summary cont'd
 Advantages:

• Basic method simple and broadly applicable
• No need for very detailed understandung of the problem
• But can be adjusted to problem if knowledge present
• Fast and can be scheduled in parallel

 Disadvantages:
• No guarantee to find best solution
• High computational demands
• Adapting to problems at hand can be hard, e.g. finding 

suitable representation/mapping and evolutionary 
operators

• Search can get “caught” in local optima
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More recent inputs from Biology

 Populations are spatial, e.g. for “speciation”

• interaction (mating, competition) localized to 
maintain diversity

 Populations have structure, e.g. niche protection

• competition will be stronger if many individuals do 
the same to maintain diversity

 Diploidy with dominance / recessivity
 N-point crossover and other variants
 Morphogenesis instead of simple function mapping 

(allowing for modularity, making crossover less fatal)



Part 2: Modelling GRNs

Gene Regulatory Networks 
(GRNs)
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Evolutionary cycle - again

PopulationPopulation

OffspringOffspring

ParentsParents

Replacement

(random) start population

Recombination
Mutation

End?End?
Selection

PopulationPopulation

OffspringOffspring

ParentsParents

Replacement

(random) start population

Recombination
Mutation

End?End?
Selection
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Evolutionary cycle - again

PopulationPopulation

OffspringOffspring

ParentsParents

Replacement

(random) start population

Recombination
Mutation

End?End?
Selection

PopulationPopulation

OffspringOffspring

ParentsParents

Replacement

(random) start population

Recombination
Mutation

End?End?
Selection
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Selection

 Selection based on comparison of individual 
phenotypes with target phenotype

 For phenotype read: input/output system
• Individual strings in population contain 

parameter sets 

• Each parameter set is used to build a different 
input/output system



Decoding, Evaluating, Comparing
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info s tring 1

info s tring 2

info s tring 3

info s tring 1

info s tring 2

info s tring 3

info s tring 1

info s tring 2

info s tring 3

Decoding
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Decoding

info s tring 1

info s tring 2

info s tring 3

S ys tem 1

S ys tem 2

S ys tem 3

info s tring 1

info s tring 2

info s tring 3

S ys tem 1

S ys tem 2

S ys tem 3

info s tring 1

info s tring 2

info s tring 3

S ys tem 1

S ys tem 2

S ys tem 3
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Evaluating

I nput

S ys tem 1

Output 1

S ys tem 2

S ys tem 3

Output 2

Output 3

Input

S ys tem 1

Output 1

S ys tem 2

S ys tem 3

Output 2

Output 3

Input

S ys tem 1

Output 1

S ys tem 2

S ys tem 3

Output 2

Output 3
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Comparing

Target

Compare wrt

Output 1

Output 2

Output 3

Target

Compare wrt

Output 1

Output 2

Output 3

Target

Compare wrt

Output 1

Output 2

Output 3
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Decoding, Evaluating, Comparing

info s tring 1

info s tring 2

info s tring 3 Target

Compare wrt

I nput

S ys tem 1

Output 1

S ys tem 2

S ys tem 3

Output 2

Output 3

info s tring 1

info s tring 2

info s tring 3 Target

Compare wrt

I nput

S ys tem 1

Output 1

S ys tem 2

S ys tem 3

Output 2

Output 3

info s tring 1

info s tring 2

info s tring 3 Target

Compare wrt

I nput

S ys tem 1

Output 1

S ys tem 2

S ys tem 3

Output 2

Output 3
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Info

11011

Rules

27

System

f(x)

Input

-

Target

Max

Output

729F(x) = x2

Example

info s tring 1

( Input)

S ys tem 1

Output 1

Decoding rules
info s tring 1

( Input)

S ys tem 1

Output 1

Decoding rules

Decoding, Evaluating, Comparing
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Info

11011

Connectivity;
parameter 

values

Rules

27

build 
GRN

System

f(x)

GRN

Input

-

Target

Max

Output

729F(x) = x2

GRN

Example

info s tring 1

( Input)

S ys tem 1

Output 1

Decoding rules
info s tring 1

( Input)

S ys tem 1

Output 1

Decoding rules

Decoding, Evaluating, Comparing



(Artificial) Genetic Regulatory Networks 
(aGRN)
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GRNs and aGRNs

 Genetic Regulatory Networks (GRN)
• The basic control networks that underlie the 

development and responses of organisms
• Involve interactions between genes, RNA, proteins

 Artificial Genetic Regulatory Networks 
• Input – output transformation systems
• Built using concepts taken from “GRN-theory” – 

assumptions on how GRNs work
 Why aGRNs?

• As (very crude) models of the “real thing”
• Interest in “computational potential”
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GRN-theory – Central Dogma

(Transcription) (Translation)

DNA RNA Protein

Information flow

(Reverse transcription)

(Transcription) (Translation)

DNA RNA Protein

Information flow

(Reverse transcription)
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GRN-theory – Central Dogma

(Transcription) (Translation)DNA RNA Protein

Information flow

(Reverse transcription)

Control

(Transcription) (Translation)DNA RNA Protein

Information flow

(Reverse transcription)

Control



GRN Control   
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Control of gene expression

DNA

Coding region

Promoter

Non-coding region

“Standard” notation
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Control of gene expression

“Upstream” region:
Often contains interaction 
points for Transcription 
Factors: proteins that repress 
or activate  transcription

Promoter: 
Starting point for transcription

Single gene
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Control of gene expression

TFx
(activator)

TFy
(repressor)

TFx
(activator)

TFy
(repressor)
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Control of gene expression

• No limit to 
number of 
activators or 
repressors

• Protein that 
acts as an 
activator for 
one gene may 
act as a 
repressor for 
another

Genetic Regulatory Network

“External factors” 
(signals, maternal proteins, …)



GRN Dynamics
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Dynamics: Petri-net notation

Messenger RNA dynamics

mRNA 

RNA 
building 
blocks 



STRI, University of Hertfordshire 100

Dynamics: Petri-net notation

Messenger RNA dynamics

transcription, 
modification, 
transport…

breakdown

mRNA 

RNA 
building 
blocks 

Factors affecting 
transcription rate 

Factors affecting 
breakdown rate 
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Symbols: Nodes

SBML: Reaction
Transition, Process, …

SBML: Species
State, Store, Place, …
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Symbols: Arrows

Function of connected species 
SBML: Reactant

Input, …

Funcion of connected species: 
SBML: Product

Output, …

Function of connected species:
SBML: ModifierSpecies

Modifier, Inhibitor, Repressor, 
Activator, Enhancer, …
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Dynamics: what happens?

mRNA production
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Dynamics: what happens?

mRNA production
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Dynamics: what happens?

mRNA production
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Dynamics: what happens?

mRNA breakdown
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Dynamics: what happens?

mRNA breakdown
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Dynamics: what happens?

mRNA breakdown
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Dynamics: what happens?

No activator, no 
production

X
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Dynamics: what happens?

No activator, no 
production

X
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Worth remembering (1)

 Reactant - Consumed during reaction
• Reactant stoichiometry > 0

 Product - Produced during reaction
• Product stoichiometry > 0

 Modifier - Neither: only affects reaction rate
• Stoichiometry = 0

• Dependence defined in the reaction’s rate equation 
(SBML: KineticLaw; transfer function, …)

• Shape of rate equation depends on process (and how 
much we know about it…)
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Dynamics

Messenger RNA and protein product dynamics

mRNA 

protein 
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proteinprotein

Dynamics

Messenger RNA and protein product dynamics



STRI, University of Hertfordshire 114

Worth remembering (2)

 Constant production without breakdown:
• Amount will increase linearly over time

 Production plus breakdown:
• Amount will reach plateau (usually; there are 

exceptions)
 Time to reach plateau determined by 

breakdown rate, not production rate
• In general: breakdown processes determine 

how rapidly a system can respond (adapt)  to 
new external conditions



Combining control and dynamics
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Creating a dynamic GRN model - 
Questions (1)

 Aim:
• Model as “realistic” as possible? Computational tool? 

Control network?
 GRN constituents

• Genes (if so: what do they represent)? Transcription 
factors? Other regulators (e.g. regulatory RNA)? 
Intermediates (e.g. mRNA)? Signals?

 Processes to incorporate
• Transcription? Translation? Breakdown? Signalling?

 Multicellularity



STRI, University of Hertfordshire 117

Creating a dynamic GRN model – 
Questions (2)
 Equations that describe process dynamics

• Mass-action type rate equations?
 Rules for (combined) effects of regulatory interactions

• Saturable? Additive? Logical?
 Numerical representation of component values

• Continuous? Discrete multivalued? Boolean (if so: what do 
0 and 1 represent)?

 Representation of time 
• Continuous? Discrete?

 Evaluation method
• Numerical integration of rate equations (if so: stochastic or 

deterministic)? Finite state automaton? Boolean switching?
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Basic GRN model

Control Dynamics



Possible dynamic representation
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Rate equations

v p=k p× f modifiers 

vb=k b×[P ]

Product production rate:

Product breakdown rate:

kp, kb: production and breakdown rate constants
[x]: concentration or amount of species x
P: gene product

Plateau value (steady state):

[P ]=
k p

k b

f modifiers 
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Rules for activation and repression 

μS , A= m [ M ]p

1m [M ]p

Saturable activation:

m: multiplier
p: exponent

μS , R= 1

1m [ M ]p

Saturable repression:

Linear activation:

μL , A=m [M ]p

Linear repression:

μL , R=−m [ M ]p
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Rules for combinatorial modifier effects

f modifiers =μ1
Sμ2

S 1−μ1
S 

f modifiers =μ1
S∨μ2

S

Logical disjunction (“or”)
(saturable):

Logical conjunction (“and”)
(saturable):

Addition, multiplication
(linear):

f modifiers =μ1
S×μ2

S

f modifiers =μ1
S∧μ2

S

f modifiers =μ1
Lμ2

L

f modifiers =μ1
L×μ2

L
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Note on GRN representation

 No single “proper” representation method
 Chosen method depends on aim of study and personal 

preference

 However, be aware of:

• the way your representation relates to the “real thing”

• the type of simplifications that have been made

 Tips:

• usually, amounts or concentrations do not  have negative values

• simple negative feedback systems are often oscillatory, but the 
oscillations may well disappear when using smaller time steps, or a 
less crude representation



Part 3: Evolving biological clocks

with artificial genetic 
regulatory networks (aGRNS)
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Introduction

 Biological clocks abound in all organisms, 
even the simplest single celled ones like      
Gonyaulax' (red tide organism):
• characteristic example of         

responsiveness of life on earth

 Evolvability of Genetic Regulatory Networks 
(GRNs) as a paradigm for novel computation
• developmental mapping

• parallelism
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Schematic drawing

 Note: no proper 
genotype/phenotype 
distinction is made 
in this drawing!
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Schematic drawing - Phenotype

 A “gene” is a gene-node in a regulatory 
network here

 This is the phenotype!!!
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What does a gene-node consist of?

 binding sites: protein input from other genes
 module: “grouping” of inputs
 any number of binding sites, any number of modules
 one protein output type and one activation type

gene-node

Protein
produced

activation 
type

...

    module

...

activatory/inhibitory

binding 
site   + / -

binding 
site
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Encoding of gene-nodes and genome

 Genome consists of a number of genes plus a 
compartment coding parameters global to the cell

 '0'/'1' code, '2' module boundary, '3' gene 
boundary; used for compartmentalization

010111021101020011113…0210013 0110011…

encodes one gene-node

module boundary gene delimiter
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Encoding of gene-nodes and genome – 
cont’d

 Two modules: 
1) inhibitory (starting with 0) 

binding a combination of 
proteins 5 (101) and 6 (110)

2) activatory cis-module 
(starting with 1) to which 
protein 5 (101) will bind. 

 Last three zeros of 
11010200 are ignored  
junk.

 Will produce protein 7 
(111) and is off by default 
(last bit is 1).

010111021101020011113

binding sites

modules 1) and 2)

regulator type

output
protein

gene activation 
type

b. site

junk
(ignored bits)
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Activation
 binding sites:

 modules:

 gene (activiation  
                            
                            
   function):

 protein levels:
   (global, 8 here)

+
-

+
-

 OR(                                                                          )  

AND(                                                               )  

1 2 3 4 5 6 7 8

activation increases one protein level
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Activation – cont’d
 As protein values are not boolean, AND is actually 

minimum and OR is a sum, but effect very similar

 every gene is either of constituitive (“default on”, 
dotted line) or induced (“default off”, continuous 
line) type
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Gene-node activation example

 protein 5: 20 per site and type 6: 1 per site bind
 binding sites:                          [=1]                   [=20]

 modules:                                 [-1]                   [+20]

 gene:                                              [f(-1+20)=~125]
(activation
function f)             

 protein level:

5:20 6:1 5:20

- +

7:+125

activation increases
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Environmental in-/output
 simple protein in-/output
 periodic functions used:

• input 1)-4), 400 time steps

• wavelength 20 time steps
 variations with perturbations:

• +/- noise with std. dev. 0.1
• +/- 2x blackout of 20 steps

 desired behaviors 1) or 3) 
closeness of match = fitness
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Selection and Variation

 Tournament selection:
• 15 individuals randomly picked from population, 

best two of them chosen as parents

• weak elitism (only the best individual copied over)
 Mutation: 

• 1% chance for every bit to flip 0->1, 1->0
 Recombination:

• unequal crossing over, always two parents for two 
children

• Length of genes might change, number of genes is 
held constant in these experiments
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Recombination
 Unequal crossing-over allows for genomes of varying length, 

important for varying number of binding sites and modules
 Unequal crossover point is shifted by an offset
 Note that offset always stays within the compartment, so all 

genes but one are kept intact

010111021101020011113…0210013 1100110…

110111021101020011113…1102103 0110011…

010111021…0210013

110111021

0110011…

crossover point

-

+ offset of 3parents

…1102103

020011113

1100110…021101020011113
offspring
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Population development example

 Can easily evolve to show cyclic behavior
 Genome length and junk length increase on 

average (average over 10 runs)
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Individual dynamics analysis
 internalization of (quasi-) periodic behaviour in many cases
  the more unreliable the input the more this was found

two evolved GRNs with extremely
different internalized wavelengths

two evolved GRNs getting out of 
synchrony when stimuli are 
missing
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Evolvability - Heterochronicity

 all variants are one or two bit flips away from each other
 can allow heterochronic control: changes in timing are 

possible while preserving general dynamics
 remember: small genotype changes usually should 

cause small phenotype changes for smooth adaptation

evolved
wild type

slightly 
mutated 
variants
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Differentiation – schematic

 Individual has two cells with same genome 
and almost same input, but different behavior 
required

 Note: Again no clear seperation of genotype and phenotype in this drawing!
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Differentiation: two pathways
 Same ultimate goal functions (periodic and inverse)
 but different fitness evaluations over initial generations

• Immediate setting:

fitness is final objective from beginning: one cell reproduces phase of input while 
the other has to produce inverse

• gradual setting:

   
fitness is initially the same phase reproduction from beginning, but target 

phase shifts for one of the cells over generations                                        
              changing fitness landscape!
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Typical example runs for the two settings

 Best results similar, but average much better 
for 2), robustly finds good results

1) immediate 

6) gradual evaluation



Part 4: Netbuilder'

a tool for construction, 

simulation and evolution 

of GRNS
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NetBuilder′ (Project Apostrophe)

 A tool for
• construction

• modelling

• simulation (stochastic, deterministic, hybrid)

• evolution

• future: Analysis of GRNs

 Uses the Petri-net formalism
 Download:

• http://strc.herts.ac.uk/bio/maria/Apostrophe/
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NetBuilder′ ≠ NetBuilder

 NetBuilder':
• completely 

overhauled 
version

• different model 
visualisation

• more 
simulation and 
analysis 
methods
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NetBuilder′ - Petri net

 bipartite graph
• place – e.g. proteins (circle)

• transition – e.g. reaction, gene (rectangle)

• arc -  connection between a place and a transition (what is 
consumed to produce what)

place

transition
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NetBuilder′ - GUI
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NetBuilder′ - GUI

 Drawing area

• arcs

• layers

• places

• transitions

• text objects
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NetBuilder′ - GUI

 Table of attributes of an selected object
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NetBuilder′ - GUI

 Model hierarchy

• overview about which place/transition belongs 
to which layer
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NetBuilder′ - GUI

 Tool bar

new layer

open

save

print

zoom

select
rectangular
region

copy

paste

delete

new 
layer

place

transition

arc
text
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Evolution in NetBuilder'

 Based on Johannes' GA
 Differences:

• Genotype: list of arcs, places, transitions, 
parameters

• Phenotype: Petri net

• Mapping: Petri net construction 

• Fitness: likeness to target function (sum square 
error)



STRI, University of Hertfordshire 153

Genotype - Phenotype

 Gene: 

• These arcs or nodes 
in a gene are fixed 
and cannot be 
removed by 
evolutionary 
operators but 
attributes can be 
adjusted
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Genotype – Phenotype (2)

 Network:
• Activation and 

inhibition of 
protein 
production 
between 
genes

• Changeable 
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Furthermore 

 Remember:

• No limit to number of activators or repressors

• Protein that acts as an activator for one gene may act as a 
repressor for another

 Mathematical description:

• Automatically created by NetBuilder'

• or users add their own function to each transition

 Environmental input:

• Each place can have any input function (e.g. sine or 
step functions like in Johannes' GA)
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Selection

 Tournament:
• Select randomly 15 networks (default)

• The two best networks of these 15 are 
recombined

 Elitism:
• By default the best network is kept in the next 

generation (fitness never decreases)
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Recombination
 Two 

networks 
recombined

 A gene and 
its arcs go 
into the child

 Probability: 
90% (default)
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Mutations

 Add or remove arcs

 Increase or decrease arc attributes (e.g. arc 
weight = stochiometry)

 Duplicate or remove genes (inluding arcs)

 Increase or decrease transition rate

 Probability: 1% (default)
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Fitness

Fitness:
Likeness 
between 
target 
function and 
current 
results

protein



STRI, University of Hertfordshire 160

Parameters

 as adjustable as 
possible

General parameters:
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Parameters

 as adjustable as 
possible

General parameters:

Probabilities:
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Parameters

 as adjustable as possible

 Setting parameters to 0 
turns operators off

General parameters:

Probabilities:
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Summary – NetBuilder'

 Easy-to-use GUI

 Free and open-source 

 Create network, simulate (and evolve) it

 Evolution adjustable to user's needs

 Evolutionary algorithm in test phase now and 
will be available in NetBuilder’ soon !!

 https://lists.sourceforge.net/lists/listinfo/apostrophe-users
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ICSB 2007 - Posters

 For further discussions meet us at our posters 
(Tuesday and Wednesday):

• Johannes: In Silico Evolution Of Biological Clocks With 

Genetic Regulatory Networks, F5

• Katja: Netbuilder' - A Tool For The Modeling And 

Simulation Of Genetic Regulatory Networks, G8
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Resources – 
Evolutionary Algorithms

 http://www.talkorigins.org/faqs/faq-intro-to-biology.html
 Evonet flying circus

http://evonet.lri.fr/CIRCUS2/node.php
 The on-line tutorial on evolutionary computation

http://www.lcc.uma.es/~ccottap/semEC/
 Bäck, T, Fogel, D B and Michalewicz, Z, ed.: Evolutionary 

Computation 1 & 2. Taylor & Francis 2000
 Goldberg, D. E. Genetic Algorithms in Search, Optimization, and 

Machine Learning. Addison-Wesley 1989
 Langdon, W.B. and Poli, R. Foundations of Genetic 

Programming. Springer 2002

http://www.talkorigins.org/faqs/faq-intro-to-biology.html
http://evonet.lri.fr/CIRCUS2/node.php
http://www.lcc.uma.es/~ccottap/semEC/
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