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Abstract

We study the evolvability and dynamics of artificial genetic
regulatory networks (GRNs), as active control systems, real-
izing simple models of biological clocks that have evolved
to respond to periodic environmental stimuli of various kinds
with appropriate periodic behaviors. GRN models may differ
in the evolvability of expressive regulatory dynamics. A new
class of artificial GRNs with an evolvable number of complex
cis-regulatory control sites – each involving a finite number
of inhibitory and excitatory binding factors – is introduced,
allowing realization of complex regulatory logic. Previous
work on biological clocks in nature has noted the capacity
of clocks to oscillate in the absence of environmental stimuli,
putting forth several candidate explanations for their observed
behavior, related to anticipation of environmental conditions,
compartmentation of activities in time, and robustness to per-
turbations of various kinds, or unselected accidents of neutral
selection. Several of these hypotheses are explored by evolv-
ing GRNs with and without (gaussian) noise and “black out
periods” for environmental stimulation. Robustness to en-
vironmental perturbation experienced by the lineage appears
to account for some, but not all, dynamical properties of the
evolved networks including unselected abilities such as ca-
pacity to adapt to shift in phase or frequency of environmental
stimulus.

Biological Clocks
A characteristic of life on earth is itsincessant responsive-
ness(West-Eberhard, 2003). Biological clocks provide one
of the simplest yet most characteristic examples of such in-
cessant responsiveness for life as it has evolved on the earth
in that an organism’s regulatory dynamics respond with pe-
riodic activity in close coupling with periodic cycles of en-
vironmental stimuli as experienced in the rhythm of light
and dark, or in the effects of lunar gravitation of the ebb
and flow of tides. Without the capacity to adjust to exter-
nal signals, minute differences in timing period soon accu-
mulate, leading to internal clocks being hopelessly out of
step with the environment. A. T. Winfree (1986) surveys
several (non-mutually exclusive) possible explanations for

the advent and maintenance of biological clocks: (1) as a
mechanism to anticipate the destructive effects of sunlight
on cellular machinery, (2) optimization in transfer between
metabolic modes, and (3) for compartmentalization of activ-
ities in time. Following Winfree, one may ask, How is it that
do biological clocks still work when external stimuli are hid-
den (like the sun or other temporal cues) in isolation exper-
iments on living organisms? How is it that they can adapt,
within limits, to perturbations in cycle length, phase shift,
and resetting? Why in isolation do they run at rates some-
what different from that of the external cycles? Are these ac-
cidents of neutral selective value, or do they have some adap-
tive significance at the individual (or lineage) level? In evo-
lutionary and developmental biology, internalization of en-
vironment stimuli (Waddington’s genetic assimilation, belt-
and-suspenders phenomena, and the more general Baldwin
effect (Baldwin, 1896; West-Eberhard, 2003)) provides ro-
bustness and adaptation to environmental perturbations ex-
perienced by a population over evolutionary time. Robust-
ness to noise and periods of loss of signal from environmen-
tal stimulation may have played a role in the evolution of
biological clock-like mechanisms under any of the hypothe-
ses (1-3) above.

Methodology

Evolving artificial genetic regulatory networks that act as
model biological clocks is a natural method to explore the
above questions. As an evolutionary and computational
paradigm, Genetic Regulatory Networks (GRNs) support
complex regulatory and evolutionary dynamics (Banzhaf,
2003), which when combined with differentiated multicellu-
larity represent a vast potential for massive adaptive parallel
and distributed computation (Nehaniv, 2005), while achiev-
ing continual coupling of internal and external dynamics as
active, regulatory control systems (Quick et al., 2003). Al-
ready early random boolean GRN models of (Kauffman,
1969; Kauffman, 1993) showed the potential of GRNs for
capturing cyclic behaviors. In biological GRNs, genes en-
code proteins and proteins in turn regulate the expression
(activation) of genes. The dynamics of these interactions
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Figure 1: Schematic drawing of protein-genome-
environment interaction; see text for details.

not only play a key role in development (Davidson, 2001)
but also in the ongoing metabolism of all cells during their
lifetime (Alberts et al., 2002). Furthermore, cells are not
isolated but embodied in an environment, which influences
the cell, and the cell can via internal regulatory dynamics
react in turn; see fig. 1. We therefore evolve populations of
GRNs in environments with periodic external stimuli of var-
ious types to exhibit periodic behaviors of various types un-
der different conditions, and investigate the impact of stimuli
experienced by the lineage on regulatory and evolutionary
dynamics.

GRN Model
The GRN model we propose here makes locally smooth reg-
ulatory and evolutionary dynamics possible, and environ-
mental interaction is explicitly considered. It is strongly in-
spired byBiosys, described in (Quick et al., 2003). As
there we model a single cell, consisting of proteins and a
genome with a fixed number of genes. Gene activation is
controlled by regulatory sites (cis-sites or cis-modules), each
having – possibly – several binding sites. Depending on the
attachment of matching proteins to the binding sites the cor-
responding cis-modules positively or negatively influence
the production of (not necessarily different) proteins. In
molecular biology, proteins acting in such a way are called
Transcription Factors (TFs). In our model all proteins are
potentially regulatory. For simplicity in the regulatory dy-
namics we use template matching, i.e. a perfect match of
binding site and the corresponding protein is required, un-
like e.g. (Banzhaf, 2003; Bentley, 2004). The main differ-
ence from theBiosysmodel is that one can have any num-
ber of cis-modules per gene and every cis-module can have
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Figure 2: Activation Types. Every gene produces its pro-
teins according the cumulative activation level of its cis-
modules and its activation type: either even when no acti-
vation is present (“default on” - left) or only with positive
activation (“default off” - right).

any number of protein binding sites. This is to allow for two
levels of protein regulation, as it is known to molecular biol-
ogists that TFs might interact with each other and thereby
change their influence non-linearly, i.e., as (Schilstra and
Bolouri, 2002, see also references therein) put it: “[T]here
is often significant synergism – defined as deviation from
additive behavior – in the effect of multiple TFs on the ex-
pression of a single gene [references omitted].” This second
level of regulation has previously not been taken into ac-
count by other similar GRN models (Reil, 1999; Banzhaf,
2003; Taylor, 2004). So our approach facilitates the evolu-
tion of complex dynamics, coming a little closer to nature,
where “5-10 regulatory sites are the rule that might even be
occupied by complexes of proteins” (Banzhaf, 2003).
Genetic Representation The genome is a string of inte-
gers, encoding a fixed number of genes and some global pa-
rameters of the network. Digits0 and1 arecodingdigits that
may be involved in regulation or protein coding. To differen-
tiate between such a coding bit, a cis-module boundary and
a gene boundary the genetic alphabet was increased to four
digits, with 2 delimiting the end of a cis-module and3 de-
limiting the end of a gene. There are eight different proteins
in the version of the model used here, i.e. three bits encode
a protein. After compartmentalizing the genome into genes,
the last four coding digits of every gene determine its out-
put behavior, three bits for the protein produced and the last
bit for the gene’s activation type, which can beconstitutive
(“default on”) or induced(“default off”), see fig. 2. For cis-
modules the first coding bit determines its influence on the
gene’s activation level (inhibitory/activatory) and every fol-
lowing three coding digits are considered a protein binding
site. For example the gene010111021101020011113 will
produce protein 7 (111) and is “off by default” (last bit is1).
It has two cis-modules, the first inhibitory (starting with0)
binding a combination of proteins 5 (101) and 6 (110), and
an activatory cis-module (starting with1) to which protein 5
(101) will bind. Note that the last zero of110102 is ignored;
we refer to such coding digits which are neither translated



nor regulatory asjunk. The genome also encodes several
evolvable variables global to the cell. These are theprotein-
specific decay rates(four bit for every protein, indexing into
a fixed lookup table of values), the globalbinding proportion
(also four bits indexing into a lookup table, but identical for
all proteins), and finally the globalsaturation value(three
bits indexing to look up table, same for all proteins).1

Regulatory Logic The model is run over a series of dis-
crete time steps, its lifetime. In every time step initiallya
fraction of the free proteins, determined by the global bind-
ing proportion parameter, are bound to matching sites; if
there is more than one binding site competing for the same
protein the fraction is equally distributed between all match-
ing sites. In this process all protein binding sites are treated
equally, regardless of the cis-module to which they belong.
Let bi be the number of all binding sites matching protein
i (there can be several for the same protein within and be-
tween cis-modules) andct

i denote the number of instances
of proteini being available for binding at timet. Then the
amountpt

ijm of proteini bound at timet to a given binding
site in cis-modulej of genem and matching proteini is:

pt
ijm =

ct
i

bi

+ pt−1

ijm,

wherept−1

ijm is the amount of proteini at the binding site
in the previous timestep after saturation and protein-specific
decay have been taken into account, with the initial condi-
tion p0

ijm = 0. The activation levelam of genem with k

cis-modules is calculated as:

am =

k
∑

j=1

±j min
i: proteini binds to cis-modulej

pt
ijm,

where±j =

{

+1 if cis-modulej is activatory

−1 if cis-modulej is inhibitory.
Note that this use ofmin is similar to a logicalAND and re-
sults in non-additive effects (“synergy”) in gene regulation.
So the calculation of every gene’s activation level is done by
adding (activatory) or subtracting (inhibitory) the values per
cis-module but only the lowest value of bound protein per
cis-module is used (min). The increase in protein concen-
tration due to genem is thenfm(am), 2 where

fm(x) =

{

r
2

(tanh(x−15

s
) + 1) if genem is “default off”

r
2

(tanh(x+5

s
) + 1) if genem is “default on”.

1For full details, see
http://homepages.feis.herts.ac.uk/∼kj6an/GRNclocks/.

2For example, for the gene010111021101020011113 from
above this would mean that due to the first (inhibitory) cis-module,
assuming a share of 20 type 5 proteins (101) and 1 type 6 protein
(110) per binding site, the value−1 would go into the sum. The
second (activatory) cis-module however would contribute +20 re-
sulting in an overall activation of 19, which gives a proteinoutput
of about 125 type 7 proteins.

The parameters = 5 determines the steepness of the slope
and r = 150 the range of the function3, see also fig. 2.
The output of the gene’s activation function is added to the
unbound concentration of that gene’s output protein type.
Afterwards the concentrations of all unbound proteins are
checked for being above the global saturation value and all
proteins, free or bound, decayed by the protein specific rate.
Finally environmental input might occur by increasing the
unbound concentration of certain proteins by some value and
output by reading some protein concentration values.4

Evolution

We use a fairly standard Genetic Algorithm with weak
elitism, tournament selection and replacement. Every evolu-
tionary condition was studied with ten repetitions (one run)
lasting 250 generations with 250 individuals each. The ini-
tial population started with one cis-module per gene and one
protein binding site per cis-module, all coding bit values be-
ing randomly assigned.

Selection Later generations are formed by carrying over
the best-performing individual of the last generation auto-
matically and, keeping population size constant, the other
individuals are replaced by offspring. For every pair of off-
spring, 15 (not necessarily different) individuals of the prior
generation are chosen randomly and of these the best two
selected to be “parents”.

Variability A (single-point) crossover between the parent
genomes occurred 90 percent of the times and every cod-
ing bit is flipped with a mutation probability of one per-
cent. To generate a variable number of cis- and of pro-
tein binding sites per gene it is necessary to have variable
length genomes. Note that despite this, the number of genes
stays the same all the time. These properties are achieved
by dividing the parent genomes into compartments: one
compartment for every gene and one compartment for the
global variables. Then (with a probability of 0.9) a single
compartment is chosen for crossover and in this compart-
ment a point alloted for crossover. However when crossing
over from parent 1’s genome to the second parent’s genome
copying does not continue at the same position of parent 2’s
genome but is shifted by an offset (see fig. 3). This off-
set is randomly drawn from a gaussian distributed random
variable with mean 0 and standard deviation 4. The rela-
tively large number four was chosen to increase the chance
of duplicating genetic information, the importance of which
was already pointed out by (Ohno, 1970) for the evolu-

3The model seems to be quite robust against parameter choice
as tests with different values fors, r and the inflection points of
the activation functions (here,15 resp.−5 for default on and off)
produced qualitatively similar results.

4Simple scaling byr is used to map stimulus input levels from
the signal range to a protein concentration, andvice versafor out-
put protein levels.
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Figure 3: Gaussian offset crossover.Genomes of (1) par-
ent 1, (2) parent 2, (3) offspring 1, (4) offspring 2. Only one
gene and part of the global compartment shown. Both chil-
dren get digits up to the crossover point from their respective
parent, but then continue in the other parent’s genome with
opposite gaussian-distributed offsets (−3 and +3, respec-
tively, here).

tion of biological complexity. Note that the offset point is
limited to stay within the boundaries of the compartment,
hence if crossoverpoint + offset is smaller/larger than the
left/right boundary it is set to the corresponding boundary
value. So the number of 2s (cis-modules) might increase by
crossover – mutation was only applied to coding digits – but
not the number of 3s as these are the compartment bound-
aries. When crossover occurs in the part encoding for global
parameters the offset is always set to 0 as more bits would
be meaningless here.
Thus we can have neutral crossover and mutation changes,
as ‘half’ cis-modules (i.e. less than three bit – one protein
– long) are ignored. Additionally this means that, although
the number of genes was constant over one evolutionary run,
genes could be disabled completely if there was not a single
cis-module and the gene had an activation type of “off by
default”. Beside that binding sites could require a protein
never produced and thus be dysfunctional as well.

Environmental Coupling
As stated in the introduction, environmental cycles have a
huge impact on the life of organisms on earth. But in what
way these stimuli affect an active organism via its signal
transduction pathways and what behavior is appropriate de-
pends on the type of organism. Here we decided to system-
atically vary evolutionary conditions by varying the pattern
of external signal received at the cellular level — in some
scenarios distorted or interrupted or both — as well as the
periodic output behavior expected.

Input stimuli The basic idea was to have periodic envi-
ronmental stimuli based on a sine curve (shifted to the inter-
val [0, 1]). The wavelength was set to 20 time steps, while
the lifetime for every GRN was 400 steps. Variations in-
cluded having only the positive part of sine, a periodic step
function, and a brief pulse. The four functions used are
depicted in fig. 4. In addition, we varied whether gaus-
sian noise or “black-outs”, periods of no external signal,
yielding four further conditions:[±noise,±blackout]. In
[−noise,−blackout] scenarios, the input signal was trans-
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Figure 4: Periodic functions used: 1) sine, 2) positive part
of sine, 3) step, 4) pulse.

duced to yield a corresponding input of a particular protein
as described above, without any distortion. In a[+noise]
condition, gaussian white noise with a standard deviation of
0.1 was added to model imperfect signal transduction.5 For
[+blackout] conditions, at random points in time the input
stopped completely for an interval of time: every GRN ex-
perienced two periods without input, each lasting for 5 per-
cent of its lifetime. In the[+noise,+blackout] scenarios,
these perturbations were combined (with the black-out be-
ing stronger than the noise, so there was no input – not even
noise – during black-out periods).

Output behavior Two periodic target functions were used
to measure the performance of a GRN and assign fitness:
sine (fig. 4.1) and step (fig. 4.3). As the deviation from this
desired output was measured, the smaller the value the better
adapted the GRN. Lettingct

i denote the (unbound) concen-
tration of the GRN’s output proteini0 and dt the desired
output at timet the overall deviation is simply calculated as:
∑L

t=1
|ct

i0
−dt|, where the lifetimeL of every individual was

set to 400 time steps; as a reference, over such a lifespan a
random GRN on average achieved a deviation of about 200.

Experimental Scenarios

Overall 32 evolutionary conditions were tested (two desired
output types times four environmental stimulus input func-
tions in four environmental coupling variations each, as de-
scribed above) and every setting was run ten times. Ad-
ditionally the number of genes was varied (see below). In
almost every single repetition well adapted GRNs evolved,
see Table 1. In one of the[−noise,−blackout] conditions,
several individuals even achieved deviation below 1. To test
how the evolved GRNs were affected by their evolutionary
history we put the best ones into environments not experi-
enced by them or their ancestors before. At first, they got
perturbed stimuli, i.e. variations of their usual input func-
tions with noise and/or blackouts. Afterwards special new
stimuli were used: constant input, phase shifted input, dif-
ferent wavelength input or very long blackout periods.

5Note however that values below zero are set to zero as negative
protein input is not possible.



desired behavior

env. input

sine step

sine
[−noise,
−blackout]

16.70 ±1.32
best:10.40
(27.75 ±10.4)

35.31 ±8.69
best:0.762
(20.04 ±3.90)

pos. sine
[−noise,
−blackout]

26.54 ±3.47
best:12.09
(41.91±5.28)

14.48 ±2.75
best:1.145
(36.23±7.85)

step
[−noise,
−blackout]

29.63 ±1.23
best:21.51
(36.45±3.47)

27.03 ±4.04
best:2.931
(49.67±10.4)

pulse
[−noise,
−blackout]

45.33 ±6.06
best:13.10
(37.45±4.07)

43.39 ±3.13
best:26.23
(52.56±5.87)

sine
[+noise,
−blackout]

27.59 ±2.01
best:13.27
(30.44±1.81)

54.78 ±12.6
best:21.27
(41.40±6.16)

pos. sine
[+noise,
−blackout]

32.12 ±3.08
best:16.35
(37.16±4.44)

35.00 ±5.88
best:13.65
(45.30±9.35)

step
[+noise,
−blackout]

34.96 ±1.29
best:30.08
(38.83±1.85)

30.34 ±2.55
best:16.58
(70.11±14.4)

pulse
[+noise,
−blackout]

43.74 ±2.62
best:32.03
(59.79±7.38)

59.07 ±6.93
best:18.08
(65.87±3.32)

sine
[−noise,
+blackout]

33.55 ±1.21
best:28.92
(38.08±2.92)

46.48 ±4.89
best:26.27
(43.40±5.40)

pos. sine
[−noise,
+blackout]

39.92 ±4.51
best:29.29
(46.48±2.52)

43.76 ±4.84
best:25.38
(63.28±3.95)

step
[−noise,
+blackout]

41.67 ±1.73
best:29.10
(45.00±2.94)

63.47 ±10.1
best:38.20
(64.86±9.41)

pulse
[−noise,
+blackout]

50.79 ±4.21
best:24.29
(56.80±3.84)

46.09 ±4.12
best:17.75
(57.69±3.89)

sine
[+noise,
+blackout]

39.50 ±1.87
best:28.30
(55.14±7.60)

53.05 ±3.31
best:36.80
(63.08±4.34)

pos. sine
[+noise,
+blackout]

46.48 ±3.39
best:30.83
(54.92±5.71)

54.24 ±3.56
best:35.77
(72.67±8.94)

step
[+noise,
+blackout]

44.35 ±1.55
best:38.93
(49.55±2.74)

52.76 ±4.24
best:37.61
(61.51±8.48)

pulse
[+noise,
+blackout]

53.27 ±4.34
best:23.57
(71.81±6.31)

64.33 ±6.41
best:27.48
(89.70±6.73)

Table 1: Outcomes of runs evolving 9-gene GRNs, with the leftmost column depicting the environmental stimuli used and the
topmost row the desired output behavior for every run. The data cells show the final deviation of the best individual, averaged
over 10 repetitions with 250 generations each,± its standard error, as well as the best ever observed GRN’s deviation and its
lifetime behavior graph. In brackets the average deviations± std. error for the same condition only with 5 genes are given.
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Figure 5: Typical course of an experimental scenario. Av-
erages are over ten GRNs, each being the generation’s best
performing GRN in its respective repetition.

Results
Regulatory and Evolutionary Dynamics
Due to junk as well as dysfunctional genes and binding sites,
we could observe neutral changes, i.e. despite of the fact
that performance often stayed the same for some evolution-
ary period, genome length might change during crossover
or bits without function might be flipped. Although when
crossing over with an offset different from zero usually both
a shorter and a longer descendant are produced, the average
population genome length increases over evolutionary time.
The amount of junk also increases, though at a slower rate,
see. fig. 5.

Number of Genes
Running the same set of experiments with a fixed number
of 5 genes and again with 9 genes it turned out that the
ones with 9 genes in almost all cases ended up with a per-
formance superior to their 5-gene equivalents (see table 1).
Furthermore we found that, under environmental conditions
different from those experienced during evolution, the best
evolved 9-gene GRNs depended less on their environment.
Having less internal complexity, the 5-gene GRNs more of-
ten produced fast oscillating or constant output in absence
of environmental stimuli (see fig. 9 for an example).

Evolved Regulatory Dynamics
In all scenarios evolved GRNs exhibited a close match to the
desired output profile and almost always relied on external
signals to produce this behavior. As an exception, the best
performing 9-gene GRN evolved with pulse input (fig. 4.4)
distorted by noise and blackouts to produce a step output
had no binding sites for the input protein, i.e. it did not rely
on environmental stimuli at all. So the regulatory logic was
in principle able to generate a close match to that desired
output without any external stimuli. However the evolution
of such dynamics was rare and it is probably not a coinci-
dence that this happened under the evolutionary conditions
with the least reliable input. Complex interaction networks
evolved and almost all used the new regulatory logic with
several binding sites on a cis-module (an example of a 5-
gene GRN is shown in figure 6). Heterochronic control, i.e.

Gene 5

Gene 4

Gene 3

Gene 2

Gene 1

Environment

Figure 6:Regulatory interaction diagram of a evolved5-
gene GRN. Boxes denote genes (rounded corners indicating
“default on” ones with the others being “default off”), con-
nections ending in an arrow are for activatory influences and
the T-like endings depict inhibitory ones.
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Figure 7: Heterochronic control is achieved through vari-
able decay and binding rates. Shown is the behavior of a
9-gene GRN that is well adapted to producing sine waves
(the evolved “wild type”) and slight variations of it. The
variations’ genomes are at most two bit flips away from the
wild type.

changes in the timing of gene expression without affecting
the general dynamics, is achieved by varying protein decay
rates and the binding proportion (cf. fig. 7).

Behavior in Evolutionarily New Conditions
In what way and how strongly the evolved GRNs relied on
input from the environment turned out to depend strongly
on the conditions under which they evolved (the evolution-
ary history of their lineage). In the absence of input, GRNs
often exhibited an internalized output wavelength different
from the one which was desired during evolution. Such be-
havior occurred mainly in GRNs evolved under pulse input,
where the systems used the occasional input to stay synchro-
nized, for an example see fig. 8. Apart from fast oscilla-
tions we observed systems with internal periods of varying
length from 16 to almost 50 time steps (cf. fig. 9.1). Like
most biological clocks studied in man and nature (Winfree,
1986), nearly all the best evolved GRNs – except those that
completely ignored their input (which arose seldom and in
only one scenario) – in the various scenarios were robust to
the shifts in phase and limited shifts in wavelength of pe-
riodic environmental stimuli. This occurs despite their lin-
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Figure 8:Periodic Behavior during Blackout. Plot of the
output behavior of GRNs with 1) nine 2) five genes. There
is a pulsed input every twenty steps, however from time step
100 to 200 environmental input is suppressed completely.
Desired output refers to what behavior was required during
evolution, here sine output. Note how the GRN in 1) gets
slowly out of synchrony with the desired sine output during
the blackout period while this happens quickly for the one
in 2). Both GRNs are the result of evolutionary runs with
shorter blackout periods of only 20 time steps and achieved
a similar performance.

eage never having experienced such perturbations, i.e. with-
out any selection for these capabilities. When GRNs evolved
without noise (and/or blackouts) were placed in an environ-
ment with noise (and/or blackouts), performance was still
good, however always worse than that of GRNs evolved for
such environments.6

Discussion
The GRN model can easily evolve to produce cyclic behav-
ior, generally in response to periodic stimuli like that of bio-
logical clocks in nature. Moreover, like natural biological
clocks the evolved regulatory dynamics of artificial GRN
clocks tend to be robust to non-selected perturbations such
as phase shift, small period changes, and so on, as well as
perturbations that have occurred in the lineage’s evolution-
ary history (such as noise and blackouts). Especially when
there is a sparse signal and lower reliability in environmen-
tal stimuli it pays for the GRNs to internalize the rhythm.
How strongly the evolved GRN relies on environmental in-
put depends on the coupling to the environment during evo-
lution. We conclude that evolved artificial GRNs capture
many characteristic properties of biological clocks and could
serve as a useful model for further investigations.
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