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Abstract. This paper shows how to coordinate individual action within
a group of robots that have to accomplish a common task, gathering en-
ergy in a dynamic environment and transferring this energy to a nest.
Each individual behavioral pattern is driven by an internal neural rhythm
generator exhibiting quasi-periodic oscillations. The paper describes the
implementation of this generator, its influence on the dynamics of arti-
ficial recurrent neural networks controlling the robots, and the synchro-
nization of internal rhythms with differing frequencies in a group of up
to 150 robots. Synchronization is achieved either by environmental stim-
uli or even by self-organizing processes based on solely local interactions
within a robot population.

1 Introduction

Using artificial recurrent neural networks (RNN) for autonomous robot control
has become a common method in the field of Artificial Life (AL) and Evolution-
ary Robotics (ER) [6,7,11,17]. Considering a robot and its control architecture
as a dynamical system (DS) questions arise about the coupling to other DSs
such as dynamic environments [2] or other robots [1,5,15]. In this paper we will
describe three types of structural coupling [10]. We will show the coupling (i)
between an adaptive internal rhythm and three basic behaviors in one neural
architecture, which can (ii) be influenced by environmental stimuli as well as
(iii) by local interactions with other robots.

While pursuing more complex behavior the following issue becomes more and
more important. Suppose, a single agent possesses a pool of different behaviors,
one might ask how the agent decides to activate a certain behavior at a certain
time [3]. In biological systems many examples are know where such decisions are
made unconsciously by internal clocks [18]. Nowadays such internal clocks are
also under consideration for systems within the field of AL and ER. For instance,
in [12] a thought experiment is given where a robot gathers food at day and
rests at night. When the food gathering behavior becomes active only during the
presence of daylight the robot will starve after accidentally entering a cave where
no light can be perceived. To solve this conflict, an internal clock was introduced
into the neural control structure, which controls the food gathering behavior and
can be influenced by ambient light. Here, we want to apply the idea of an internal



clock [12,18] to the problem of behavior coordination in cooperating distributed
robotic systems [1,8,15] acting in a dynamic environment.

We will describe how to couple oscillating neural networks to reach very low
frequent quasi-periodic oscillations modelling an internal rhythm, how such an
internal rhythm, realized as a resettable oscillator, can be influenced by sensoric
stimuli, and how to apply this mechanism to typical tasks in distributed robotics,
foraging and homing. Even if individual behaviors within a robot population are
completely out of phase and individual rhythms follow different frequencies we
will see that it is possible to synchronize these rhythms by either environmental
stimuli or even by purely local interactions among the individuals. The latter
synchronization mechanism can be seen as a self-organizing process, which is,
to some extend, inspired by the synchronized flashing behavior among fireflies
during mating ([4] and references within it). Here, similar principles are applied
to embedded and situated individuals in a dynamic environment, where synchro-
nization is an emergent property of the overall system based on very simple local
interactions among a group containing up to 150 artificial agents controlled by
RNNs.

2 Methods

2.1 Neural model of an inner rhythm

Biological systems exhibit periodic behavior on various time scales, and it is
assumed that at least some of it are controlled by so called central pattern gen-
erators (CPG) internal to the nervous system [9]. In the following, we propose
a CPG which consists of two coupled SO(2) networks [14]. This model’s fre-
quency can be adjusted by only one parameter and it is stable even for very long
wavelengths. Standard discrete time recurrent neural networks with a sigmoidal
activation function are used.

Coupled oscillator architecture. SO(2) networks, described in [14], have
weight matrices based on elements of the special orthogonal group of the same
name. Their weight matrices are associated with rotations in the plane and are
represented by functions of the rotation angle ¢. Due to the existence of quasi-
periodic attractors they generate sinus-shaped waveforms.

Our oscillator is based on a coupling of two identical SO(2) networks. Ac-
cordingly, wavelengths depend only on one parameter, as can be seen from their
weight matrix

cos(p) sin(p) 0 0
—sin(p) cos(p) € 0 (1)
0 0 cos(p) sin(y) |’

e 0 —sin(yp) cos(p)

where ¢ € {—m, 7}. The strength of coupling and hence amplitude size is given
by € # 0. All bias terms were set to 0.0 and € to 0.008, and the activation
of each neuron was randomly initialized. This weight matrix will work for the
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Fig. 1. Coupled oscillator, (A) architecture with optional amplifying neurons and reset
control, (B) neuron outputs of a coupled oscillator with a wavelength of ca. 2400 time
steps.

?

1
5000 10000 15000 20000
time step

N
Hj3
SNTTTTT

activation function o(z) = tanh(z), but a transformation to a network with the
standard sigmoidal activation function o(z) = (1 +e~%)7!, as it will be used in
the following experiments, with equivalent dynamics is possible (see [13]).

Setting || close to zero one can get very long wavelengths, for example
using a ¢ of 1078 yields stable wavelengths of more than three million time
steps. For such wavelengths the size of the amplitude becomes very small, so it
was useful to add amplifying neurons downstream (Hs and Hg in figure 1 (A)).
Connecting them with a very strong weight to one of the oscillator neurons
results in an (inverse) amplified output within the saturation domains of the
activation function.

Resetting oscillations. By giving input on one of the four neurons (Hy in
figure 1 (A)) one can interrupt the CPG’s oscillations. After the input stops the
CPG will immediately start its oscillations again, thereby causing a phase shift.
Depending on which neuron receives this reset signal, the amplified output will
be in an "on” or ”off” mode while the input is given. The plot in figure 1 (B)
shows the oscillators reaction after getting a long reset signal starting at time
step 7000 and a short one at time step 12000. Both times the quasi-periodic
oscillations stop at once and the amplified output switches to "on”. When the
input comes to an end oscillations restart in a stereotypic way.

2.2 Experimental setup

Individual setup. Figure 3 shows a prototype of the fully autonomous robot
Do:Little (A) and its simulated model (B). For many reasons this small size
(length: 14.5 cm, width: 11.5 c¢m) robot is a promising platform for large scale



Fig. 2. The prototype of the Do:Little robot (A), its simulated model (B), and the
simulation environment (C).

distributed robotic system experiments since on the one hand it shall be reason-
ably priced and provides, on the other hand, rich sensoric and motoric equip-
ment. Despite active infrared, light density, grey scale, energy, and motor shunt
sensors, the striking features of the robot are the abilities to exchange electric en-
ergy with other robots and to communicate through simple acoustic signals. To
keep the communicational effort as minimal as possible frequency and amplitude
filtering is done by the physical hardware. Different signals are characterized by
different pulse sequences. Hence, the robot can perceive and produce different
”chirp” signals. Additionally the robot is able to detect the direction of a per-
ceived signal, which is represented by two sensor inputs (left and right) for each
signal. In conformity with the physical hardware the simulation is updated with
10 Hz.

Behavioral setup. Three basic behaviors were evolved by a so called restrictive
expansion technique [7]. Firstly, we evolved a robust obstacle avoidance behavior
(OA-module). Secondly, while keeping the OA-module’s structure fixed a positive
photo tropism was additionally evolved (P-module). In the following this photo
tropism is considered as foraging behavior. Thirdly, in the same way a positive
sound tropism was evolved (S-module) that is considered as homing behavior.
Up to that point we could combine the same OA-module with either the P- or S-
module resulting in two different robot behaviors. As a result of the combination
of these modules and our pattern generator, as it can been seen in figure 3, an
exclusive switching between foraging and homing behavior can be carried out.
The internal rhythm of the pattern generator does not influence the OA-module
because the robot should avoid collisions at any time. The sensor input neurons
of the P- and S-module project feed forward to a corresponding hidden neuron
layer. Only these hidden layers have connections to and from the motor outputs
controlling the wheels. As it can been seen the amplifying neurons (Hyg, H11)
of the pattern generator inhibit the according hidden layer through synapses
with very strong negative weights. As a result of using the standard sigmoidal
transfer function for this RNN, the inhibition only proceeds while the output of
an amplifying neuron is 1. Additionally, one output neuron (Sp) allows the robot
to communicate its behavioral state switches. Therefore, this motor neuron is
excited by one amplifying neuron (Hig, see figure 3). By setting an appropriate
bias and a negative self connection this neuron integrates the signal of Hig
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Fig. 3. Neural network architecture (see text for details).

and produces the highest peak when the output of H; switches from zero to
one, i.e. when the robot switches from foraging to homing behavior. This peak
triggers a sound signal lasting 10 time steps which in turn can be perceived by
nearby robots (range = 1 m) through an input neuron (Mic, see figure 3). This
represents the reset signal as discussed in section 2.1.

FEach individual within a robot population possesses its ”own” oscillator, i.e.
the wavelengths of each individual inner rhythm slightly differ. For each exper-
iment the oscillator of a single individual is randomly (uniformly distributed)
chosen, the lower wavelength bound was 2250 and the upper bound 2600 time
steps, i.e. the mean wavelength within a population is 2425 £175 time steps.

Environmental setup. For the following experiments an environment as shown
in figure 2 (C) was used (length: 5 m, width: 5 m). The grey circle in the bottom
right corner represents the nest that emits a strong periodic sound signal. This
signal, which is different to the signal that can be emitted by the robots, can be
perceived within the complete environment. By using the S-module the robot
is able to robustly find a way to the nest while avoiding obstacles (homing
behavior). In the left half of the environment three light sources are randomly
distributed. The P-module enables a robot to recharge its own energy level by
approaching and finally standing in front of a light source (foraging behavior).
Robot’s energy has a weak leakage with time and a stronger leakage depending
on its motor activity. The overall task of a robot group is to transfer collected
energy to the nest. A single robot can load a maximum of 1 energy unit. If
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Fig. 4. Synchronization through environmental stimuli. A: Sample run with a partly
synchronized group. B: Mean nest energy of 100 runs with three differently synchro-
nized groups.

a robot enters the nest area its energy is continuously transfered to the nest,
which has its maximum at 50 energy units. Because the time dependent leakage
rate of the nest is 50 times higher compared to a single robot, its energy level
cannot be maintained by a single robot. The parameters for the energy in- and
outflow of the robot and the nest are chosen in a way that only coordinated,
i.e. synchronized, action of a robot group can yield a maximization of the nest
energy amount.

The described experimental setup should demonstrate the application of an
internal neural rhythm, as described in section 2.1, and how to synchronize indi-
vidual rhythms within a robot group to achieve coordinated action. The following
experiments show how to reach coordination by (i) environmental stimuli and
(ii) solely local interactions even if the length of the individual rhythms slightly
differ, and (iii) a comparison of synchronization effects within homogeneous and
heterogeneous oscillators of a very large robot group at a macroscopic level.

3 Results

Synchronization through environmental stimuli. As a result of disabling
the speaker output neuron (Sp, figure 3) robots are not able to communicate
their behavioral state switches. Instead we replaced this signal by a global signal
that could be perceived within the complete environment. In figure 4 (A) the
behavioral states of 25 robots is drawn with time. From time step 0 to 25000
no signals are presented and we can see each robot is switching its behavior
according to its inner rhythm. Each robot is starting in a different phase be-
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Fig. 5. Synchronization through local interactions. A sample run of a 25 robots con-
taining population and the evolution of the nest energy

cause the pattern generator is always randomly initialized. In this time slot the
uncoordinated action of the robots leads to a slight decrease of the nest energy.

The main reason for this decrease is that the robots enormously interfere
with each other. What generally happens is, that a subgroup of robots are in the
foraging state, i.e. they are leaving the nest to search for energy. At the same
time another subgroup of robots is in the homing state, i.e. they are returning to
the nest. If the ways of both groups intersect, for instance at a narrow passage,
they obstruct each other. Over time, while continuously avoiding each other, this
conflict will be solved. But this can take so much time that probably no robot
will accomplish its current task (foraging / homing) before its inner rhythm
again switches its behavior.

To achieve coordination a global acoustic signal is presented between time
step 25000 and 50000. The signal appears every 2425 time steps (mean wave-
length of the inner rhythms within the population) for 10 time steps. Each robot
can receive this signal and its pattern generator is reseted as we described in sec-
tion 2.1. What happens is that the uncoordinated action very quickly becomes
coordinated during the time period of signal perception because the rhythm of
each robot is reseted at the same time. Now, the coordinated action of the group
leads to an periodic increase of the nest energy. From time step 50000 the global
signalling is stopped and we can see that each robot falls back in its own rhythm
of foraging and homing. This leads slowly to a more and more uncoordinated ac-
tion that in turn provokes a slight decrease of the nest energy level. Figure 4 (B)
shows that this is a characteristic overall behavior for the described experiment.
The mean nest energy level is drawn with time for 100 runs with randomized
initial activations of the pattern generators and random locations of the three
light sources. We see the result of presenting no signal in comparison to where
the signal is presented during the complete evaluation time, and how the overall
behavior switches between these two results when the signal is presented only
at a certain period of time like it is described for a sample run above.

Synchronization through local interactions. Instead of using a global
"leader” signal, like in the previous experiment, the robots are now able to
communicate their behavioral state switches through emitting a sound signal
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Fig. 6. Behavioral state synchronization of 150 robots with (A) different inner rhythms
and (B) identical inner rhythms.

(Sp, figure 3). Despite of the short range (1 m) it is the same signal that was
used for the global synchronization process. If more than one signal is emitted
at the same time within the perceiving range of a robot, the robot is able to
recognize only the closest one. This simplification reflects the behavior of the
physical hardware, as far as it could be tested on the first prototype.

Figure 5 (A) shows the behavioral state evolution of each single robot as well
as the evolution of the nest energy. Communication was allowed only between
time step 25000 and 50000. Again, we can see the phase shifts of the individual
behavioral states at the beginning. The uncoordinated action of the individuals
leads to a decrease of the nest energy due to the previously described interference
of uncoordinated robots. From time step 25000 on every individual is signalling
its switch from foraging to homing behavior and hence resets the inner rhythm
of all perceiving robots within a range of 1 meter. This switch mostly occurs,
when a robot is close to a light source. Although the light sources are randomly
distributed, the population becomes very quickly synchronized within about 5000
time steps.

The transition from uncoordinated to coordinated group action can been
seen in the evolution of the nest energy which now periodically increases as we
have seen it in the experiment before. Once again, this is a characteristic overall
behavior independent from the initial conditions (not shown).

Synchronization of heterogeneous and homogeneous oscillators. To
demonstrate that the described synchronization process is stable for larger robot
groups we repeated the previous experiment with 150 robots. Figure 6 (A) shows
the development of the individual behavioral states. Again, individuals were al-
lowed to communicate between time step 25000 and 50000. We obtained the same
synchronizing effect as for the smaller sized population. Figure 6 (B) shows the



result of the same experiment but this time the inner rhythms of every individual
are identical within the population (wavelength = 2425 time steps). We see that
the population is almost perfectly synchronized within 25000 time steps, and, as
it could be expected, once the behavioral states are synchronized, they remain
synchronized although the individuals could not communicate any more. The
reason is quite obvious. Because there is no mechanism of de-synchronization
there is no need for persisting synchronizing forces once the system is synchro-
nized.

4 Conclusions

In this paper we presented an implementation of a general neural pattern gen-
erator that can be used for flexible inner rhythms in autonomous robot control.
It is general in terms of that it can be integrated in any kind of RNNs using
the standard additive neuron type with discrete time dynamics. It is flexible
because a very broad range of wavelengths can be utilized by changing only one
parameter, and it is adaptive to external stimuli, like the presented phase re-
seting behavior. This resettable neural oscillator was used to realize a periodic
internal drive that determines the activity of innate behavioral patterns.

In particular we presented an application addressing a major issue in con-
trol of distributed robotic systems, the coordination of individual behavior [1,
8,15]. It was possible to synchronize prior completely out of phase behavioral
states through global environmental signals. Especially, we could also show how
to synchronize up to 150 robots through self-organizing processes, i.e. by solely
local interactions among individuals. As we mentioned in the introduction this
experiment was inspired by a well known biological example, the flashing among
fireflies during mating ([4] and references within it). Although our model of inter-
nal oscillators differs from models of the biological ones, there are some similar
principles. Each individual oscillator has a free run period (firefly: 965 + 90 ms,
Do:Little robot: 2425 + 175 time steps) which can be influenced by an external
stimuli presented by neighboring individuals leading to a phase reset. This signal
strongly correlates to a certain period of time within the oscillation (firefly: begin
of the rising excitation phase; Do:Little robot: switch from foraging to homing
behavior). In [16] it was pointed out that ”the behavior of communities of oscil-
lators whose members have differing frequencies depends on the strength of the
coupling among them.” In our presented experiments the coupling was strong
enough to achieve synchrony, i.e. every perceived signal provokes a phase reset.
For further work it would be interesting to investigate the effect of weakening
the coupling among the individuals. Nevertheless we want to emphasize that
we presented synchronization of inner neural rhythms through self-organizing
processes for embedded and situated agents acting in a dynamic environment,
and that this synchronization based on very simple local interactions, such as
emitting and detecting a single acoustic signal.

The presented architecture of an internal rhythm is a versatile framework for
experiments and applications in the field of AL and ER. Here, it was applied



to synchronize two innate behavioral patterns within a group of robots. But the
architecture offers many more possibilities for behavior control. For instance,
instead of using the internal rhythm for an ”on-or-off” switching it should be
possible to reach smooth transitions between behavioral patterns. Furthermore
the capability of adapting the internal rhythm smoothly to an external rhythm
was not utilized so far, but it promises many interesting applications for robot
control.
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