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Genetic Regulatory Networks (GRNs) are the control systems of all cells. Their dynamics
are of crucial importance in development [4] but also in the ongoing, reactive, metabolism
[1]. A characteristic example of such responsive regulation are circadian rhythms, which
were present already in early life forms [10]. Following Winfree [10, 11], we ask 1) How is it
that biological clocks can adapt, within limits, to perturbations in cycle length, phase shift,
and resetting? 2) Why in isolation do they run at internalized rates somewhat different
from that of the external cycles? 3) Are these accidents of neutral selective value, or do they
have some adaptive significance at the individual level? Evolving artificial genetic regulatory
networks (aGRNs) that act as model biological clocks is a natural method to explore these
questions.
In our model, every network consists of a number of genes, each having any number of reg-
ulatory sites. Gene expression levels are determined by the activation of the corresponding
sites and their interaction rules as well as gene type. Abstracting from transduction, environ-
mental input simply raises the level of one protein type while the concentration of another
type is read as output (fig. 1A, 2A).
Starting from simple random networks, we use an evolutionary algorithm to arrive at a
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A) Schema of network−environment interaction

2)1)

B) aGRN dynamics revealed when stimulus is missing − external signals are needed to keep in sync

C) Example phase resetting diagram with color coded new phase after
disruptive stimulus, after Winfree [10] − note singularity
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A) Input / desired output functions, with dashed lines (0.5 phase shift) used for differentiation experiments

B) Schema of entity in differentiation experiments, both cells have the same genome and stimulus (apart
from type inducer) but have to produce inverse outputs

network whose output closely matches one or two periodic signals. A detailed description
of the model and algorithm can be found in [8, 6]. In many cases aGRN dynamics showed
internalization of (quasi-) periodic behavior (the less reliable the input during evolution,
the more internalization). External stimuli were often only required to keep responses in
synchrony, fig. 1B, and (not-selected-for) phase resetting behavior similar to that observed
in biological organisms was found (fig. 1C, [10]).

Another very important regulatory mechanism is differentiation: In a multicellular organism,
all cells contain the same genome but can take on very different functional roles, depending
on signals or differences in the internal chemical composition [5]. We found that it was in-
deed possible to integrate two different functionalities in one aGRN instantiated in different
contexts in a multicellular entity (fig. 2B).
We then investigated whether we could identify significant patterns or prevalent network

motifs that had arisen during the evolution process, in order to assess the uniqueness and
robustness of the networks that realize particular functionalities.
For network analysis in general and specifically for GRNs, structural, static network occur-
rence analysis has become quite popular recently [9, 2]. Motifs, subnetwork patterns that
occur significantly more often than in random networks, are said to have functional signifi-
cance and even that network structure of independent origin could evolve convergently [3].
However we find in both groups (one-function clock aGRNs and two-function differentiat-
ing aGRNs) motif distribution differences within the groups to be larger than differences



between them [7]. Apparently structural analysis does not allow us to find “the” switch
responsible for differentiation, instead this behavior can be variously realized by many dif-
ferent structures. Also, when lesioning one connection from either the most over-represented
motif or any random connection, we find no significant difference in impact on function of
the aGRN [7]. These results warrant caution for researchers when drawing conclusions from
motif analyses.
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